Meta Reinforcement Learning for Adaptive Control: An Offline Approach

Daniel G. McClement?, Nathan P. Lawrence®, Johan U. Backstrom®, Philip D. Loewen*?, Michael G. Forbesd, R. Bhushan
Gopaluni*?

“Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada
bDepartment of Mathematics, University of British Columbia, Vancouver BC, Canada
¢Backstrom Systems Engineering Ltd.
dHoneywell Process Solutions, North Vancouver, BC Canada
* Authors provided equal supervision.

A Abstract

9\
)
(Q\

Meta-learning is a branch of machine learning which trains neural network models to synthesize a wide variety of data in order
to rapidly solve new problems. In process control, many systems have similar and well-understood dynamics, which suggests it

is feasible to create a generalizable controller through meta-learning. In this work, we formulate a meta reinforcement learning
(meta-RL) control strategy that takes advantage of known, offline information for training, such as the system gain or time con-

=

stant, yet efficiently controls novel systems in a completely model-free fashion. Our meta-RL agent has a recurrent structure that

accumulates “context” for its current dynamics through a hidden state variable. This end-to-end architecture enables the agent to
automatically adapt to changes in the process dynamics. Moreover, the same agent can be deployed on systems with previously
unseen nonlinearities and timescales. In tests reported here, the meta-RL agent was trained entirely offline, yet produced excellent

~——results in novel settings. A key design element is the ability to leverage model-based information offline during training, while
maintaining a model-free policy structure for interacting with novel environments. To illustrate the approach, we take the actions
proposed by the meta-RL agent to be changes to gains of a proportional-integral controller, resulting in a generalized, adaptive,
closed-loop tuning strategy. Meta-learning is a promising approach for constructing sample-efficient intelligent controllers.

Keywords: Meta-learning, deep learning, reinforcement learning, adaptive control, process control, PID control

1. Introduction

Reinforcement learning (RL) is a branch of machine learn-
ing that formulates a goal-oriented “policy” for taking actions
in a stochastic environment [1]]. This general framework has
attracted the interest of the process control community [2]. For
= example, one can consider feedback control problems without
the need for a process model in this setting. Despite its ap-
peal, an overarching challenge in RL is its need for a significant
amount of data to learn a useful policy.

Meta-learning, or “learning to learn”, is an active area of re-

09661v1 [eess.SY

v:2203

.— search in which the objective is to learn an underlying structure

governing a distribution of possible tasks [3]]. In process con-
B trol applications, meta-learning is appealing because many sys-
tems have similar dynamics or a known structure, which sug-
gests training over a distribution could improve the sample ef-
ﬁciencyﬂ when learning any single task. Moreover, extensive
online learning is impractical for training over a large number
of systems; by focusing on learning a underlying structure for
the tasks, we can more readily adapt to a new system.

This paper proposes a method for improving the online sam-
ple efficiency of RL agents. Our approach is to train a “meta”

"How efficient a machine learning model is at learning from data; a high
sample efficiency means a model can effectively learn from small amounts of
data.

Preprint submitted to Journal of Process Control

RL agent offline by exposing it to a broad distribution of differ-
ent dynamics. The agent synthesizes its experience from dif-
ferent environments to quickly learn an optimal policy for its
present environment. The training is performed completely of-
fline and the result is a single RL agent that can quickly adapt
its policy to a new environment in a model-free fashion.

We apply this general method to the industrially-relevant
problem of autonomous controller tuning. We show how our
trained agent can adaptively fine-tune proportional-integral (PI)
controller parameters when the underlying dynamics drift or are
not contained in the distribution used for training. We apply
the same agent to novel dynamics featuring nonlinearities and
different time scales. Moreover, perhaps the most appealing
consequence of this method is that it removes the need to ac-
commodate a training algorithm on a system-by-system basis —
for example, through extensive online training or transfer learn-
ing, hyperparameter tuning, or system identification — because
the adaptive policy is pre-computed and represented in a single
model.

1.1. Contributions

In this work, we propose the use of meta-reinforcement
learning (meta-RL) for process control applications. We cre-
ate a recurrent neural network (RNN) based policy. The hidden
state of the RNN serves as an encoding of the system dynamics,
which provides the network with “context” for its policy. The

March 21, 2022

controller is trained using a distribution of different processes
referred to as “tasks”. We aim to use this framework to develop
a “universal controller” which can quickly adapt to effectively
control any process rather than a single task.

This paper extends McClement et al. [4] with the following
additional contributions:

¢ A simplified and improved meta-RL algorithm;

e Completely new simulation studies, including industrially-
relevant examples dealing with PID controllers and non-
linear dynamics; and

e A method of leveraging known system information offline
for the purposes of training, with model-free online de-
ployment.

This framework addresses key priorities in industrial process
control, particularly

o Initial tuning and commissioning of a PID controller, and

e Adaptive updates of the PID controller as the process
changes over time.

This paper is organized as follows: In Section [2] we sum-
marize key concepts from RL and meta-RL; in Section [3] we
describe our algorithm for meta-RL and its practical implemen-
tation for process control applications. We demonstrate our ap-
proach through numerical examples in Section[d] and conclude
in Section

1.2. Related work

We review some related work at the intersection of RL and
process control. For a more thorough overview the reader is
referred to the survey papers by Shin et al. [5], Lee et al. [6]], or
the tutorial-style papers by Nian et al. [2]], Spielberg et al. [7].

Some initial studies by Hoskins and Himmelblau [8]], Kaisare
et al. [9]], Lee and Lee [10], Lee and Wong [11] in the 1990s
and 2000s demonstrated the appeal of reinforcement learning
and approximate dynamic programming for process control ap-
plications. More recently, there has been significant interest in
deep RL methods for process control [12} [13} [14} [15 [16} [17,
18].

Spielberg et al. [/] adapted the deep deterministic policy gra-
dient (DDPG) algorithm for setpoint tracking problems in a
model-free fashion. Meanwhile, Wang et al. [19] developed
a deep RL algorithm based on proximal policy optimization
[20]]. Petsagkourakis et al. [21] use transfer learning to adapt
a policy developed in simulation to novel systems. Varia-
tions of DDPG, such as twin-delayed DDPG (TD3) [22] or a
Monte-Carlo based strategy, have also shown promising results
in complex control tasks [23| [24]. Other approaches to RL-
based control utilize a fixed controller structure such as PID
[251 126} 27, 28]

This present work differs significantly from the approaches
mentioned so far. Other approaches to more sample-efficient
RL in process control utilize apprenticeship learning, transfer
learning, or model-based strategies augmented with deep RL

algorithms [29} 21} 130]. Our method differs in two significant
ways: the training and deployment process is simplified with
our meta-RL agent through its synthesized training over a large
distribution of systems. Therefore, only a single model needs to
be trained, rather than training models on a system-by-system
basis. Second, the meta-RL agent in our framework does not
rely on any system identification or prior knowledge of the un-
derlying dynamics. Although the meta-RL agent is trained in
simulation, the key to our approach is that the policy only uti-
lizes process data, and thus achieves efficient model-free con-
trol on novel dynamics. A similar concept has been reported in
the robotics literature where a robust policy for a single agent
is trained offline, leveraging “privileged” information about the
system dynamics [31]. Most similar to this present work is a
paper in the field of robotics where a recurrent PPO policy was
trained with randomized dynamics to improve the adaptation
from simulated environments to real ones [32].

2. Background

2.1. Reinforcement learning

In this section, we give a brief overview of deep RL and
highlight some popular meta-RL methods. We refer the reader
to Nian et al. [2], Spielberg et al. [7], for tutorial overviews
of deep RL with applications to process control. We use the
standard RL terminology that can be found in Sutton and Barto
[33]. Huisman et al. [34] gives a unified survey of deep meta-
learning.

The RL framework consists of an agent and an environment.
For each state s; € S (the state-space) the agent encounters, it
takes some action a; € A (the action-space), leading to a new
state s;,1. The action is chosen according to a conditional prob-
ability distribution 7 called a policy; we denote this relationship
by a; ~ n(as;). Although the system dynamics are not neces-
sarily known, we assume they can be described as a Markov
decision process (MDP) with initial distribution p(sy) and tran-
sition probability p(s,.1|s;, a;). A state-space model in control is
a special case of a MDP, where the states are the usual (minimal
realization) vector that characterizes the system, while the ac-
tions are the control inputs. However, the present formulation is
more general, as we will demonstrate in later sections. At each
time step, a bounded scalar cosﬂ ¢, = c(sy,a,) is evaluated. The
cost function describes the desirability of a state-action pair:
defining it is a key part of the design process. The overall ob-
jective, however, is the expected long-term cost. In terms of
a user-specified discount factor 0 < y < 1, the optimization
problem of interest becomes

minimize J(0) = Ejpmq,

N t—1
Dy els mols) So} 0

t=1

over all 6 eR".

’In RL literature, the objective is a maximization problem in terms of a
reward function. Equivalently, we will formulate a minimization problem in
terms of a cost function.

In this problem, 4 ~ p" refers to a typical trajectory

h = (s9,da0,C0,,---,SN,an,Cy) generated by the policy 7 with
subsequent states distributed according to p. Within the space
of all possible policies, we optimize over a parameterized sub-
set whose members are denoted my. We use 6 as a generic term
a vector of parameters: in our application, the individual pa-
rameters are weights in a neural network.

Common approaches to solving Problem (IJ) involve tech-
niques based on Q-learning (value-based methods) and the pol-
icy gradient theorem (policy-based methods) [33], or a combi-
nation of both called actor-critic methods [35]. Closely-related
functions to J are the Q-function (state-action value function)
and value function, respectively:

O(siyar) = Epopr(y Z Y elsi, ar) St’at:| 2)
=t

V(s) = Epepr(y Z Y (s, ar) Sz}- 3)
=t

The advantage function is then A(s,a) = Q(s,a) — V(s). These
functions help form the basis for deep RL algorithms, that is, al-
gorithms that use deep neural networks to solve RL tasks. Deep
neural networks are a flexible form of function approximators,
well-suited for learning complex control laws. Moreover, func-
tion approximation methods make RL problems tractable in
continuous state and action spaces [36, 137, [38]]. Without them,
discretization of the state and action spaces is necessary, accen-
tuating the “curse of dimensionality’ﬂ
A standard approach to solving Problem (I)) uses gradient
descent:
6 — 6—-aVJj), “)

where @ > 0 is a step-size parameter. Analytic expressions for
such a gradient exist for both stochastic and deterministic poli-
cies [33[37]. However, in practice, approximations are neces-
sary. Therefore, it is of practical interest to formulate a “surro-
gate” objective that can be used to decrease the true objective
given in (T).

Trust region policy optimization (TRPO) is an on-policy
method for decreasing J with each policy update [39]. Using
the latest policy, whose weights we denote by 6,4, the surro-
gate objective function is defined as

7y(s)
L9om (9) = EhNP””nld(') [mAgom(S, (l)} (5)

The surrogate objective function Ly, computes the expected
return of the optimization variable, policy my, over the trajec-
tories of the most recent policy. Hence the old policy mg,, is
used as an importance sampling estimator. The keys behind the
derivation of TRPO are twofold: 1) There exists a non-trivial

step-size that will improve the true objective J; 2) In order to

3The “curse of dimensionality” refers to data sets having exponentially
larger “sample spaces” as the number of features grows. The larger sample
space requires exponentially more training data to learn from, reducing the sam-
ple efficiency.

decrease the true objective, one must place a constraint on the

“difference” between policies between update iterations. We

use the Kullback-Leibler (KL) divergence, defined for generic
J4€))

probability densities p and ¢ by Dxi(pllg) = E.., [log (42)].

The principal result is that there is constant C such that

J(m) < L9o]d 0+ CDE;IX (ﬂ-gold ,70)

max

where D™ (mr, &) = max Dy (n(s)|17(s)),

and that minimizing this function over 6 will decrease the true
objective J [39]. In practice, TRPO minimizes Ly, subject to
a hard constraint on D™ between policy iterates. Regardless
of this hard constraint, the optimization problem is solved us-
ing natural policy gradients, which requires computing the Hes-
sian of the KL-divergence with respect to the policy parameters.
Thus, the main disadvantage of TRPO is its scalability due to
its computational burden.

Proximal policy optimization (PPO) is a first-order approxi-
mation of TRPO [20]. The main idea behind PPO is to modify
the surrogate loss function in Equation (3 such that parame-
ter updates using stochastic gradient descent do not drastically
change the policy probability density. The new surrogate ob-
jective function is the following:

LYPO() =
. (S

T ()

Agyy(5,), sat() e) Agy (s, a))}
o4 (s)
©6)

u

where sat(u; 1,€) = uif —e <u—1 < eand sat(u; 1,¢€) = 1 +em
otherwise. Despite being somewhat complicated, the intuition
for Equation (6) is understood through cases inside the ‘min’
functions: when A is positive, the term inside the expecta-
()
Toe1q (8)
on how much the objective can increase; the case when A is
negative is similar. Either way, the term inside the expectation
can only increase by making actions more or less likely, de-
pending on if the advantage is positive or negative, respectively.
Moreover, the saturation limits how much the new policy can
deviate from the old one. Trajectories with 7o are used to ap-
proximate Ay, , which is then used to approximate and optimize
Equation (6) using gradient ascent.

tion becomes min(I+ 6)A901d(s, a), which puts a limit

2.2. Meta Reinforcement Learning

While the algorithms mentioned above can achieve impres-
sive results in a wide range of domains, they are designed to
be applied to a single MDP. In contrast, meta-RL aims to gen-
eralize agents to a distribution of MDPs. Formally, a single
MDP can be characterized by a tuple 7 = (S, A, p,c,y); in
contrast, meta-RL tackles an optimization problem over a dis-
tribution ppmeta(7) of MDPs. Therefore, in the meta-RL termi-
nology, a “task” is simply all the components comprising a sin-
gle RL problem. The problem of interest in the meta-RL setting
is a generalization of the standard RL objective in Problem (T}

Episode —

Episode —

MDP 1 MDP 2

Figure 1: A diagram of the meta-RL agent’s interactions with the task distribu-
tion p(7).

[134]):
minimize Jiypew(®) = Ey)y o) [0 (T, 9))]

0 e R" M

over all

Crucially, in the context of process control, meta-RL does not
aim to find a single controller that performs well across different
plants. Note that 6" in Equation (7)) is the optimal weight vector
in (I) as a function of a sampled MDP 7 and the meta-weights
©. Meta-RL agents aims to simultaneously learn the underlying
structure characterizing different plants and the corresponding
optimal control strategy under its cost function. The practical
benefit is that this enables RL agents to quickly adapt to novel
environments.

There are two components to meta-learning algorithms: the
models (e.g., actor-critic networks) that solve a given task, and
a set of meta-parameters that learn how to update the model
[40L 41]]. Due to the shared structure among tasks in process
control applications, we are interested in context-based meta-
RL methods [42} 43, 44]. These approaches learn a latent rep-
resentation of each task, enabling the agent to simultaneously
learn the context and the policy for a given task.

Our method is similar to Duan et al. [42]. We view Equa-
tion as a single RL problem. For each MDP 7~ ~ p(7"),
the meta-RL agent has a maximum number of time steps, 7,
to interact with the environment, called an episode. As each
episode progresses, the RL agent has an internal hidden state
z, which evolves with each time step through the MDP based
on the RL states the agent observes: z; = fo(z-1,5;). The
RL agent conditions its actions on both s, and z,. An illus-
tration of this concept is shown in Figure E} Therefore, the
purpose of the meta-parameters @ is to quickly adapt a con-
trol policy for a MDP 7~ ~ p(7) by solving for a suitable set
of MDP-specific parameters encoded by z;. This is why this
approach is described as meta-RL; rather than training a rein-
forcement learning agent to control a process, we are training a
meta-reinforcement learning agent to find a suitable set of pa-
rameters for a reinforcement learning agent which can control
a process. The advantage of training a meta-RL agent is that
the final model is capable of controlling every MDP across the
task distribution p(7°) whereas a regular RL agent could only
be optimized for a single task 7.

Clearly, the key component of the above framework is the
hidden state. This is generated with a recurrent neural net-

work (RNN), which we briefly describe in a simplified form;
the RNN structure we use in practice is a gated recurrent net-
work (GRU) [45]. A RNN is a special neural network structure
for processing sequential data. Its basic form [46] is shown be-
low:

r = O-(Wzt—l + Ux, + b) (8)
o,=Vz +c.)

Here W, U, V, b, c are trainable weights, while x, is some input to
the network and o, is the output. o is a nonlinear function; in the
case of the GRU structure used in the present work, a sigmoid
function is used. A RNN can be thought of as a nonlinear state-
space system that is optimized for some objective. The main
point is that the characteristic feature of any type of RNN is the
hidden state, which evolves alongside sequential input data.

3. Meta-RL for process control

We apply the meta-RL framework to the problem of tuning
proportional-integral (PI) controllers. The formulation can be
applied to any fixed-structure controller, but due to their preva-
lence, we focus on PI controllers as a practical illustration.

3.1. Tasks, states, actions, costs

The systems of interest are first-order plus time delay
(FOPTD):
k —0s

Gls) = s+ 1

, (10)

where k is the process gain, 7 the time constant, 6 is the time
delay, and s is the Laplace variable (not to be confused with
s;, which represents the RL state at time step 7). Such models
are often good low-order approximations for the purposes of PI
tuning [47]. The formulation in continuous time is tidy, but in
practice we of course discretize Equation (T0).

A PI controller has the form:

1
C(s) = K. (1 + —) an
TS
alternatively written as:
1
Cls) =kp + ki, (12)

where K., 74, k,, and k; are tuning parameters. The PI param-
eters in (IT)) are more commonly used and results are reported
in terms of these parameters, however the parameter definitions
in (I2) are used to train the meta-RL agent due to the improved
numerical stability gained by using an integral gain parameter
rather than an integral time constant parameter in the RL stateﬂ

4The inverse relationship between 7; and the controller output can cause
instability early in offline training, if a poorly trained meta-RL model sets 7; ~
0. No similar stability concerns arise when using k;.

Prior work on RL for PI tuning suggests an update scheme of
the form [28]:

[k, ki] < [kp, kil + aVI([kp, ki]) (13)
= [kp, ki] + Alky, ki (14)

where the RL policy is directly parameterized as a PI controller.
Therefore, in the meta-RL context, we take the actions to be
changes to the PI parameters A[k,, k;].

For simplicity, the MDP state (s) used by the RL agent to
select its actions (updates to the PI parameters) is based on the
standard form of the PI controller. In practice, different flavours
of fixed-structure controllers can be used, including the velocity
form of PI controllers or full PID controllers. The MDP state
contains the current PI parameters as well as the proportional
setpoint error and the integral setpoint error calculated from the
beginning of an episode, #y, to the current time step, .

5
5 = [kp,ki,e,,f e,d‘r] (15)
fo

The RL agent is trained to minimize its discounted future
cost interacting with different tasks. The cost function used to
train the meta-RL agent is the squared error from a target trajec-
tory, shown in Equation (I6). The target trajectory is calculated
by applying a first order filter to the setpoint signal. The time
constant of this filter is set to the desired closed-loop time con-
stant, 7.;. A target closed-loop time constant of 27 is chosen
for robustness and smooth control action. An L1 regulariza-
tion penalty 8 > 0 on the agent’s actions is also added to the
cost function to encourage sparsity in the meta-RL agent’s out-
put and help the tuning algorithm converge to a constant set
of PI parameters (rather than acting as a non-linear feedback
controller and constantly changing the controller parameters in
response to the current state of the system).

Cr = (ydesired,t - yr)2 +,B|Akp| +B|Aki|’ (16)
Vs —9s
Yiesirea(s) = Fﬁle o (17)

Comparing the RL state definition to the RL cost definition,
we see similar trajectories through different MDPs will receive
very different costs depending on the underlying system dy-
namics in the particular tasks being controlled. In order for
the meta-RL agent to perform well on a new task, it needs to
perform implicit system identification to generate an internal
representation of the system dynamics.

The advantages of this meta-RL scheme for PI tuning are
summarized as follows:

e Tuning is performed in closed-loop and without explicit
system identification.

e Tuning is performed automatically even as the underlying
system changes.

e The agent can be deployed on novel “in distribution’ﬂ Sys-

3“in-distribution” systems are defined as processes within the task distri-

tems without any online training.

e The meta-RL agent is a single model that is trained once,
offline, meaning one does not need to specify hyperparam-
eters on a task-by-task basis.

e The meta-RL agent’s cost function is conditioned on the
process dynamics and will produce consistent closed-loop
control behaviour on different systems.

This approach is not limited to PI tuning. It can also be applied
to other scenarios where the model structure is known. The
agent then learns to behave near-optimally inside each task in
the training distribution, bypassing the need to identify model
parameters and only train on that instance of the dynamics.

3.2. RL Agent Structure

The structure of the meta-RL agent is shown in Figure[2] The
grey box shows the “actor”, i.e., the part of the agent used on-
line for controller tuning. Through interacting with a system
and observing the RL states at each time step, the agent’s recur-
rent layers create an embedding (hidden state) which encodes
information needed to tune the PI parameters, including infor-
mation about the system dynamics and the uncertainty associ-
ated with this information. These embeddings essentially rep-
resent process-specific RL parameters which are updated as the
meta-RL agent’s knowledge of the process dynamics changes.
Two fully connected layers use these embeddings to recom-
mend adjustments to the controller’s PI parameters. The in-
clusion of recurrent layers is essential for the meta-RL agent’s
performance. Having a hidden state carried between time steps
equips the agent with memory and enables the agent to learn a
representation of the process dynamics. A traditional feedfor-
ward RL network would be unable to differentiate between dif-
ferent tasks and would perform significantly worse. This con-
cept is demonstrated in McClement et al. [4].

Outside of the grey box are additional parts of the meta-RL
agent which are only used during offline training. The “critic”
(shown in green) is trained to calculate the value (an estimate
of the agent’s discounted future cost in the current MDP given
the current RL state). This value function is used to train the
meta-RL actor through gradient descent using Equation (6).

A unique strategy we use to improve the training efficiency of
the meta-RL agent is to give the critic network access to “priv-
ileged information”, defined as any additional information out-
side the RL state and denoted as £. In addition to the RL state,
the critic conditions its estimates of the value function on the
true process parameters (K, 7, and 6), as well as the deep hidden
state[?_’] of the actor. Knowledge of a task’s process dynamics, as
well as knowledge of the actor’s internal representation of the
process dynamics through its hidden state, allows the controller
to more accurately estimate the value function, which improves
the quality of the surrogate objective function used to train the

bution p(7") the meta-RL agent was trained across. As shown in Section .3}
nearly any system can be modified to be “in-distribution”.

The deep hidden state is the hidden state of the second (i.e. “deeper”)
recurrent layer in the meta-RL agent.

Meta-RL Policy

t
St{ K, K, e LO e, dt
v
Recurrent Layer 1 ‘b

v
Recurrent Layer 2 ‘b

¥ v

Critic Actor
S
t Kz Encoder Encoder
y -~ -
utpu
L
Fully Connected Layer Layer
v v
Output Layer AKc, AKj,

v
Vi

Figure 2: The structure of the RL agent. The control policy used online is
shown in the grey box while the critic used during offline training is shown in
green.

actor. Equipping the critic with this information also allows it
to operate as a simpler feedforward neural network rather than
a recurrent network like the actor.

The privileged information given to the critic network may
at first appear to conflict with the advantages of the proposed
meta-RL tuning method, since the critic requires the true system
parameters and much simpler tuning methods for PI controllers
exist if such information is known. However, this information
is only required during offfine training. The meta-RL agent is
trained on simulated systems with known process dynamics, but
the end result of this training procedure is a meta-RL agent that
can be used to tune PI parameters for a real process online with
no task-specific training or knowledge of the process dynamics.
The portion of the meta-RL agent operating online contained in
the grey box only requires RL state information — process data
— at each time step.

3.3. Training Algorithm

The meta-RL agent is trained by uniformly sampling K, 7,
and 6 to create a FOPTD system and initializing a PI controller
with K. = 0.05 and 7; = 1.0. The state of the system is ran-
domly initialized near zero and the set point is switched be-
tween 1 and —1 every 11 units of time. The meta-RL agent has
no inherent time scale and so we keep the units of time general
to highlight the applicability of the proposed PI tuning algo-
rithm to both fast and slow processes (allowing time constants
on the order of milliseconds or hours).

Table [T| shows the distribution of FOPTD model parameters
uniformly sampled from during training. In Section f.5] we
demonstrate how training across this range of parameters can
be quite versatile in practice using data augmentation.

There are two main limitations to the size of the task dis-
tribution the meta-RL agent can effectively be trained across.
Firstly, neural network training works best when the features
they are trained on have a consistent scale. However, for differ-
ent systems, suitable k, and k; parameters can vary by orders of
magnitude. It becomes very difficult to train a neural network to
effectively process inputs with significantly varying magnitudes
(k, and k; are part of the RL state) as well as produce outputs
which vary by orders of magnitude (Ak, and Ak; are the RL ac-
tions). Secondly, the time scale of the distribution of systems
must be reasonably bounded so there exists a sampling timeﬂ for
the meta-RL agent to use which is appropriate for every system
it interacts with. A large MDP time step on systems with fast
dynamics will not allow the meta-RL agent to effectively learn
the process dynamics. The transient response to any set point
change or disturbance would occur between time steps and not
be visible to the neural network. On the other hand, a small
sampling time on systems with slow dynamics will cause tran-
sient system responses to stretch across many time steps. Re-
current neural networks struggle to learn relationships in data
occurring over very long sequences, so the ability for the net-
work to identify systems with slow dynamics is reduced if the
time step is too small.

Table 1: The range of model parameters used to train the meta-RL agent.

Model Parameter K T g
Minimum 025 025 O
Maximum 1.0 1.0 1.0

Algorithm 1 shows the procedure used to train the meta-RL
agent. The PPO algorithm is adopted from Open AI’s “Spin-
ning Up” implementation and modified to accomodate the in-
clusion of a recurrent neural network and distribution of control
tasks [48]].

"The sampling time referenced in this work is the sampling time for up-
dates to the RL state (which is also the time increment between updates to the
controller gains). This is not the same as the controller sampling time used to
update the control action.

Algorithm 1 Meta-RL Controller Training
Adapted from OpenAI’s PPO implementation documentation.

Input: Initial meta-policy parameters @, initial value function
parameters ¢g

1:

for each training episode do

2: Sample a batch of tasks 7., ~ p(7)

3 Initialize a buffer to hold state transition data Dy

4: for each 7 do

5 Collect a trajectory & using the current meta-policy

e on task 7;

Mean Squared
Error

Process Dead Time Set to 0.5T
10

Process Gain Set to 0.5

Process
Dead
Time 06 K

8

0.75

0.00

% Minimum Error
® Maximum Error

05 0.75
Open Loop Time Constant, T Y4 0.5 0.75 L0

0.25

Open Loop Time Constant, T

Figure 3: Mean squared error of FOPTD system outputs compared to their

6: Store h in Dy, respective target trajectories after the meta-RL agent interacts with the system
7 end for until its PI parameters converge. The horizontal lines in the left heatmap and
Compute advantage estimates A usine eeneralized ad- vertical lines in the right heatmap are a result of the discretization of the time
p . X g > g8 K delay during simulations.
vantage estimation [49]] and the current value function Vj.
9: Divide trajectories into sequences of the desired length,
L, for backpropagation through time. K=0.25, T=0.25, 8=0.10 K=0.50, T=1.00, 8=0.20
10: Update the policy by minimizing the PPO-Clip objec-
tive using gradient descent: 1.00 =
_ | T s Telasls) g
11: O = arg m@an DheDy 2at=0 mm(mlmek (s1,a0),& o075 il y
12: Update the value function to estimate the cost-to-go of 0.50 i J
an episode using gradient descent:
N T A 0.25 E
13: $r+1 = arg ngn DT ZheDk Zt:()(vrb(stv &) - Rt)2
0.00]
14: end for
—0.25]
—0.50 A]
4. Experimental results 075 | —— Setpaint
’ ——- Target Trajectory
100 | —— Qutput
4.1. Asymptotic Performance of the Meta-RL Tuning Algorithm e 25 50 75 100 oo 25 5o 75 100
Time Time

Figure [3] shows the asymptotic performance of the meta-RL
tuning algorithm as measured by the mean squared error from
the target trajectory for a set point change from —1 to 1 and
gives a cross-sectional view of how the model performs across
the task distribution. There are three parameters which define
the process dynamics so we hold k or the ratio § constant so we
can visualize the results in two dimensions.

Overall, the tuning algorithm is able to closely match the tar-
get output for any system from its distribution. Performance
decreases slightly for systems where both the process gain and
the time constant are small. A possible explanation for low per-
formance in this region lies in the cost function formulation.
The cost function in Equation (T6) penalizes the agent propor-
tional to |Ak,| and |Ak;|. Systems with small process gains and
time constants require the largest controller gains. An unin-
tended effect of the cost function may be that it incentivizes
the slight undertuning of such systems as the slight decrease in
target trajectory tracking error is outweighed by the penalty in-
curred for further increasing the controller gains past a certain
point within the finite time horizon of a training episode. In
other words, the slight drop in performance may be a result of a
slight misalignment of the meta-RL algorithm’s objective from
the control engineer’s objective.

Figure [4] shows the performance in the worst-case and best-
case scenarios based on target trajectory tracking performance
selected from Figure@ ‘We see even in the worst-case scenario,

Figure 4: System output trajectories for a set point change from —1 to 1 using
the meta-RL algorithm’s PI tunings compared to the target trajectories. The
worst-case (left) and best-case (right) are selected from the heatmaps in Fig-
ure El No noise is included in the simulation to more clearly illustrate the
trajectories.

the meta-RL algorithm’s PI tunings provide desirable control
performance.

4.2. Online Sample Efficiency of the Meta-RL Tuning Algo-
rithm

Section[&.T|showed the asymptotic performance of the meta-
RL PI tunings. Another important consideration is the online
sample efficiency of the PI tuning; how fast do the controller pa-
rameters converge? Figure[5]shows the time for both controller
parameters to converge to =10% of their ultimate values. The
convergence of the tunings is dependent on the excitation in the
system. In our experiments, excitation was created by set point
changes every 11 units of time. The convergence speed could
be increased with more excitation (conversely, it can be slower
with less excitation). The meta-RL agent uses a sampling time
of 2.75 units of time (i.e. the PI parameters are updated every
2.75 units of time; 4 times for each set point change).

Systems with large process gains and fast dynamics converge
quickest, requiring just a single set point change (around 10

Process Dead Time Set to 0.51 125
!

Process Gain Set to 0.5

Process
Dead
Time

]

* Minimum Time
® Maximum Time
0.5 075

Open Loop Time Constant, T 0.25 05 075 'mﬂ 25

Open Loop Time Constant, T

Figure 5: Online time required for both the &, and k; parameters to reach £10%
of their ultimate values.

K=0.32, 1=0.89, 6=0.40 K=1.00, 1=0.42, 6=0.20

Process 1 1
Output
o — Setpoint
0 --- Target Trajectory
— Output
-1 -1

0 50 100 150 200 250 0 50 100 150 200 250

Process 1
nput 25
00 0
-25 N

0 50 100 150 200 250 0 50 100 150 200 250

Controller
Parameters 1
05 ra
—

50 100 150 200 250 0 50 100 150 200 250
Time Time

Figure 6: System output trajectories showing the converge of the controller’s
PI parameters over time. The worst-case (left) and best-case (right) are selected
from the heatmaps in Figureﬂ

units of time). Systems with small gains and slow dynamics
take longer to converge, requiring 13 set point changes to con-
verge (around 140 units of time).

Figure [6] shows the performance in the worst-case and best-
case scenarios based on convergence time selected from Fig-
ure 5] Requiring over 13 set point changes to near convergence
sounds undesirable, however from Figure |§| we see even in this
worst-case scenario, reasonable PI tunings are reached after a
single set point change. The performance continues to improve
with time to more closely match the target trajectory.

4.3. Adaptive Control Using the Meta-RL Tuning Algorithm

A promising use case for a meta-RL tuning algorithm is
adaptive process control. If the process dynamics change over
time or if a process moves to a new operating region with dif-
ferent dynamics, this can be viewed as moving to a different
region of the meta-RL agent’s task distribution. Figure[7]shows
the performance of the meta-RL tuning algorithm in response
to significant changes to the process dynamics (7 ramping up
from 0.4 to 1.0 or k having a step change from 0.5 to 1.0). In
these examples, a forgetting factor, y = 0.99, is applied to the
meta-RL agent’s hidden states at each time step as we empir-
ically observed this to speed up adaptation without noticeably
effecting performance. Equation (9) can be modified to show
how the forgetting factor is incorporated:

zz=0(yWzi1 + Ux; + b) (18)

We see the controller’s parameters adapt to the changing sys-

Drifting Process Lag Time Step Change in the Process

Figure 7: System output trajectories showing the response of the tuning algo-
rithm to changes in the process dynamics. Dashed lines show the results if no
adaptive tuning is performed after the initial tuning by the meta-RL algorithm.

tem dynamics with very little disturbance to the system output
(aside from an unavoidable disturbance when the process gain
is suddenly doubled).

4.4. Validation of the Meta-RL Algorithm’s Internal Model
Representation

Based on the simulation results in Sections 1] to 43 and
the recurrent structure of the meta-RL algorithm, we expect the
model’s hidden states to encode information about the system
dynamics which allow it to tailor its PI tunings to the specific
system it is interacting with. To validate this theory, we per-
form principal component analysis (PCA) on the ultimate deep
hidden states after interacting with different FOPTD processes.
We perform PCA on hidden states taken from simulations with
different process gains and time constants but a constant ratio
5. At the end of the simulations, the model has had time to
converge to the final PI parameters and we expect the only dif-
ferences in the hidden states between different simulations to be
related to the process gain and process time scale. Therefore,
differences between hidden states of different systems are ex-
pected to reduce to two principal components (PCs) with very
little loss of information.

Figure [8| confirms this hypothesis. Two components capture
98% of the variance in the ultimate deep hidden states. Look-
ing at the PCA trends with respect to the process gain and time
constant, we see the hidden states create a near-orthogonal grid
based on these two parameters. The meta-RL model’s hidden
states allow it to create an internal representation of the pro-
cess dynamics through closed-loop process data in a model-free
manner.

In Figure [§] we also analyze how the deep hidden state
evolves over time throughout a simulation. The hidden states
are initialized with zeros at the start of every episode and, inter-
estingly, this corresponds to a point in the principal component-
space opposite the region of the principal component-space cor-
responding to systems with small gains and small time con-
stants. This makes sense from a robustness perspective: the
PI parameters for these systems are the largest and there is a
greater risk in assuming a system has a small gain and small
time constant rather than assuming a large gain and large time
constant until more information can be collected. We see the
meta-RL develops a very sensible internal representation of
FOPTD systems.

1.00 Procees Gain
1.00

0.75

0.50

0.25

Open-loop Time
00 Constant
1.00

PC2 0.254
(26% Explained Variance)

0.00

~0.25

~0.50

~0.75 1

o

-0.5 0.0 0.5 10 1.

° 0
0 00 o5 10 N
PC 1 (72% Explained Variance)

&

Figure 8: PCA results on the ultimate deep hidden states from the meta-RL
model after interacting with systems with process gains and time constants
ranging from 0.25 to 1.0 and a near-constant lag time to dead time ratio.
The gaps in the grid are due to the discretization of the dead time used in
simulations. The bottom plot illustrates the time evolution of the meta-RL
model’s deep hidden state through the low-dimensional principal component-
space while interacting with a FOPTD system (K = 0.75, 7 = 0.25, 6 = 0.20).

4.5. A simulated two-tank environment

This example demonstrates an industrial testbed for the meta-
RL agent. Using the same agent used in the previous results, we
apply it to a simulated two-tank system. Notable features of this
example are the following:

e The two-tank dynamics are nonlinear and slower than the
FOPTD systems used for training the meta-RL agent. That
is, the two-tank system is “out of distribution”.

e We apply the meta-RL agent in novel operating regions not
seen during training; the meta-RL agent was only trained
on step changes centred at 0 with a magnitude of +1.

We show how to apply the meta-RL agent to this novel envi-
ronment despite all these practical differences. This simulated
environment is a reasonable surrogate for a real apparatus: it is
nonlinear, has a cascaded structure (for pump and flow control),
and the pump, flow, level measurements are realizable through
the use of filters. These dynamics are reported in Lawrence
et al. [28] but conveyed here for completeness.

4.5.1. Description of the dynamics

We consider the problem of controlling the liquid level in
an upper tank, positioned vertically above a second tank that
serves as a reservoir. Water drains from the tank into the reser-
voir through an outflow pipe, and is replenished by water from

Symbol Value or unit Description

Ttank 1.2065 (length) Tank radius
Tpipe 0.125 (Iength) Outflow pipe radius
Jmax 80 (volume/time) Maximum flow
A 0.61 Flow coefficient
Tpinoun 0.1,0.1,0.1, 0.2 (time) Time constants
g (length/timez) Gravitational constant
4 length Tank level
m length Filtered tank level
in volume/time Inflow
Sout volume/time Outflow
)4 % Pump speed
p % Desired pump speed

Table 2: Parameters and variables for the two-tank system. “Tank” here refers
to the upper tank. The four time constants refer to the pump speed, inflow,
outflow, and measured level, respectively. Length is in decimeters (dm), time is
in minutes, volume is in liters. The tank height in our simulation is 12.192 dm.

the reservoir delivered by a pump whose flow rate is our manip-
ulated variable. More precisely, two PI controllers are in oper-
ation: For a desired level, one PI controller outputs the desired
flow rate based on level tracking error. This flow rate is then
used as a reference signal for the second PI controller, whose
output is the pump speed. The first is referred to as the “level
controller” and the second as the “flow controller”. System pa-
rameters, values, and descriptions are given in Table |Zl

The system dynamics are based on Bernoulli’s equation,
Sfout ® fe \/@’, and the conservation of fluid volume in the up-

per tank:
d .
d_t (ﬂrtza“kg) = ﬂrémke = ﬁn - foul' (19)

(We use dot notation to represent differentiation with respect
to time.) Our application involves four filtered signals, with
time constants 7, for the pump, 7;, for changes in the inflow,
Tout for the outflow, and 7, for the measured level dynamics.
We therefore have the following system of differential equations
describing the pump, flows, level, and measured level:

T,Pp+p=p (20)
Tinfin + fin = fmax (%) 2D
Toulfoul + ﬁ)ut = ﬂrgipef;: Vng (22)
ﬂr[%inki) = ﬁn - fout (23)

T +m = £. (24)

To track a desired level @ we can employ level and flow con-
trollers by including the following equations:

]_7 = PIﬂow(ﬁn - ﬁn) (25)
fin = Plieyer (E —m). (26)

8Barred variables are used to denote set points. For example, £ represents
the tank level set point.

Equation (23)-Equation (26) use shorthand for PI controllers
taking the error signals f, — fi, and £ — m, respectively. For our
purposes, Plg,, is fixed and a part of the environment, while
Pljeyel is the tunable controller.

This mathematical description is given to provide intuition
for our control system. For the following results, we empha-
size that the meta-RL agent was not trained on data from this
environment, yet it iteratively fine-tunes the controller Pljeye;.

4.5.2. Adapting the Meta-RL Model to the Two Tank System
An accurate first order approximation of the tank level dy-
namics around the operating region is:

1.7
55s+1

However, assuming we have very limited information about
the true dynamics of the system, we will use the following crude
model to set up the meta-RL tuning algorithm:

-13s

G(s) = (27)

1.2
30s + 1

Our objective is to use the meta-RL algorithm to control the
tank level around the operating region of 50-60 cm. First, we
need to augment the process data to match the data distribution
used to train the model (centered at 0, ranging from —1 to 1). To
do this, we first apply a constant control action to bring the tank
level into the desired operating region (u = 12 liter/min). Next,
all process data has the mean (55 cm) subtracted and is scaled
down by a factor of 10. This brings the data the meta-RL agent
observes into alignment with its training distribution. Scaling
the data also has the effect of decreasing the apparent controller
gain in Equation (28) to 0.12.

Next, we adjust the controller gain. The meta-RL algorithm
is equipped to handle systems with process gains ranging from
0.25-1.0. By scaling the controller’s output by %, we geo-
metrically centre the model in Equation to appear to the
meta-RL agent as a system with &k = 0.5. If the estimated pro-
cess gain used to set up the meta-RL agent is incorrect by any
factor between 0.5 to 2.0, the true process gain will still fall
within the task distribution. In this case, the true process gain
of 1.7 appears as a process gain 0.71 to the meta-RL agent.

Next, we select an appropriate sampling time. By picking a
slow sampling time, the tank’s dynamics appear faster from the
perspective of the meta-RL agent. To geometrically center the
time constant in Equation (28) to the meta-RL’s task distribu-
tion, we set the sampling time to every % = 60 seconds. The
true time constant of 55 seconds then appears as a time constant
of 0.92 to the meta-RL agent.

Through data augmentation, controller gain adjustment, and
sampling time adjustment, the meta-RL agent’s task distribu-
tion can be adapted to many ‘“out-of-distribution” systems as
long as the magnitudes of each parameter can be estimated.

Alternatively, if a meta-RL agent is being created for a par-
ticular application where there is a very coarse understanding
of the process dynamics, the agent could be trained across a
very non-conservative distribution of possible process dynam-
ics to avoid the need for data augmentation and directly deploy

G(s) = (28)

10

Tank Level
(em) 60

— Setpoint

— output

—— Output Without Tuning

14
Process
input 13

12

— Input

1 —— Input Without Tuning

10

vl __________
o3 %1

0.0
0 10 20 30 40 50 60 70
Time (minutes)

— K
—
—-= Kc Without Tuning
—-- 7 Without Tuning

Controller
Parameters

Figure 9: Performance of the meta-RL tuning algorithm for controlling the
water level in a non-linear two-tank system. The performance without the meta-
RL tuning is shown as a point of reference.

the meta-RL agent on the system as in the previous examples
in Sections @d.1J4.2J4.3] However, the advantage of direct de-
ployment without data augmentation comes at the expense of
training a meta-RL agent from scratch. Both these meta-RL ap-
proaches avoid the disadvantages of conventional RL methods:
the need for very accurate estimates of the process dynamics
or additional online fine-tuning to deal with plant-model mis-
match.

4.5.3. Results

Figure[9]shows the tuning performance of the meta-RL agent
on the two-tank system. After just one set point change, the
meta-RL agent is able to find reasonable PI parameters for the
system, demonstrating it is effective not just on true FOPTD
systems, but also on nonlinear systems which can be approxi-
mated with FOPTD models. This example also contextualizes
the sample efficiency of the meta-RL algorithm by providing
an example with real units of time. For a system with a time
constant around 1 minute and a dead time of around 13 sec-
onds, it takes around 4 minutes for the PI parameters to nearly
converge.

From this case study, we see that the meta-RL algorithm can
apply to a very large variety of processes. There is just one a
caveat to the “model free” claim. While a process model is not
needed for the meta-RL algorithm to work, the magnitude of
the process gain and time constant must be known so the pro-
cess data can be properly augmented. The task of scaling the
gains and process dynamics needs to be automated for success-
ful industry acceptance and this is something we intend to work
on.

5. Conclusion

In this work, we presented a meta-RL model capable of tun-
ing fixed-structure controllers in closed-loop without explicit
system identification and demonstrated our approach using PI
controllers. The tuning algorithm can be used to help automate
the initial tuning of controllers or maintenance of controllers
by adaptively updating the controller parameters as process dy-
namics change over time. Assuming the magnitude of the pro-
cess gain and time constant are known, the meta-RL tuning al-

gorithm can be applied to any system which can be reasonably
approximated as a FOPTD systenﬂ

A major challenge of applying RL to industrial process con-
trol is sample efficiency. The meta-RL model presented in this
work addresses this problem by training a model to control a
large distribution of possible systems offline in advance. The
meta-RL model is then able to tune fixed-structure process con-
trollers online with no process-specific training and no process
model. There are two key design considerations which enable
this performance. First is the inclusion of a hidden state in the
RL agent, giving the meta-RL agent a memory it uses to learn
internal representations of the process dynamics through pro-
cess data. Second is constructing a value function which uses
extra information in addition to the RL state. Conditioning the
value function on this additional information, Vy4(s,{) as op-
posed to Vy(s), improves the training efficiency of the meta-RL
model.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgements

We gratefully acknowledge the financial support of the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) and Honeywell Connected Plant.

References
[1] R.S. Sutton, Learning to predict by the methods of temporal differences,
Machine learning 3 (1988) 9-44.
R. Nian, J. Liu, B. Huang, A review on reinforcement learning: Introduc-
tion and applications in industrial process control, Computers & Chemi-
cal Engineering (2020) 106886.
C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast
adaptation of deep networks, arXiv preprint arXiv:1703.03400 (2017).
D. G. McClement, N. P. Lawrence, P. D. Loewen, M. G. Forbes, J. U.
Backstrom, R. B. Gopaluni, A meta-reinforcement learning approach to
process control, IFAC-PapersOnLine 54 (2021) 685-692.
J. Shin, T. A. Badgwell, K.-H. Liu, J. H. Lee, Reinforcement Learning —
Overview of recent progress and implications for process control, Com-
puters & Chemical Engineering 127 (2019) 282-294. doii10.1016/j .
compchemeng.2019.05.029,
J. H. Lee, J. Shin, M. J. Realff, Machine learning: Overview of the
recent progresses and implications for the process systems engineering
field, Computers & Chemical Engineering 114 (2018) 111-121.
S. Spielberg, A. Tulsyan, N. P. Lawrence, P. D. Loewen, R. B. Gopaluni,
Toward self-driving processes: A deep reinforcement learning approach
to control, AIChE Journal (2019). doi:10.1002/aic.16689,
J. Hoskins, D. Himmelblau, Process control via artificial neural net-
works and reinforcement learning, Computers & Chemical Engineering
16 (1992) 241-251. doii10.1016/0098- 1354 (92) 80045-B,
N. S. Kaisare, J. M. Lee, J. H. Lee, Simulation based strategy for nonlin-
ear optimal control: application to a microbial cell reactor, International
Journal of Robust and Nonlinear Control 13 (2003) 347-363.

[2]

[3]
[4]

[3]

[6]

[7]

[8]

[9]

9The present work focuses on FOPTD systems with 7 > 6, however the
results could be extended to dead-time dominant systems by expanding the task
distribution p(7°) used during training.

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. M. Lee, J. H. Lee, Value function-based approach to the scheduling
of multiple controllers, Journal of Process Control 18 (2008) 533-542.
doii10.1016/j. jprocont.2007.10.016.

J. H. Lee, W. Wong, Approximate dynamic programming approach for
process control, Journal of Process Control 20 (2010) 1038-1048.

M. M. Noel, B. J. Pandian, Control of a nonlinear liquid level system
using a new artificial neural network based reinforcement learning ap-
proach, Applied Soft Computing 23 (2014) 444-451. doi:10.1016/j .
asoc.2014.06.037.

S. Syafiie, F. Tadeo, E. Martinez, T. Alvarez, Model-free control based on
reinforcement learning for a wastewater treatment problem, Applied Soft
Computing 11 (2011) 73-82. doii10.1016/j.asoc.2009.10.018|

Y. Ma, W. Zhu, M. G. Benton, J. Romagnoli, Continuous control of a
polymerization system with deep reinforcement learning, Journal of Pro-
cess Control 75 (2019) 40-47. doii10.1016/j.jprocont.2018.11.
004.

Y. Cui, L. Zhu, M. Fujisaki, H. Kanokogi, T. Matsubara, Factorial Kernel
Dynamic Policy Programming for Vinyl Acetate Monomer Plant Model
Control, in: 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE), IEEE, Munich, 2018, pp. 304-309.
doi:10.1109/C0OASE.2018.8560593.

Y. Ge, S. Li, P. Chang, An approximate dynamic programming method
for the optimal control of Alkai-Surfactant-Polymer flooding, Journal
of Process Control 64 (2018) 15-26. doi:10.1016/j. jprocont.2018.
01.010.

B. J. Pandian, M. M. Noel, Control of a bioreactor using a new partially
supervised reinforcement learning algorithm, Journal of Process Control
69 (2018) 16-29. doii10.1016/j . jprocont.2018.07.013

0. Dogru, N. Wieczorek, K. Velswamy, F. Ibrahim, B. Huang, Online
reinforcement learning for a continuous space system with experimental
validation, Journal of Process Control 104 (2021) 86-100. doii10.1016/
Jj-Jjprocont.2021.06.004.

Y. Wang, K. Velswamy, B. Huang, A novel approach to feedback control
with deep reinforcement learning, IFAC-PapersOnLine 51 (2018) 31-36.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017).
P. Petsagkourakis, I. O. Sandoval, E. Bradford, D. Zhang, E. A. del Rio-
Chanona, Reinforcement learning for batch bioprocess optimization,
Computers & Chemical Engineering 133 (2020) 106649.

S. Fujimoto, H. Van Hoof, D. Meger, Addressing function approximation
error in actor-critic methods, arXiv preprint arXiv:1802.09477 (2018).

T. Joshi, S. Makker, H. Kodamana, H. Kandath, Application of twin
delayed deep deterministic policy gradient learning for the control of
transesterification process, arXiv:2102.13012 [cs, eess] (2021). URL:
http://arxiv.org/abs/2102.13012}|arXiv:2102.13012,

H. Yoo, B. Kim, J. W. Kim, J. H. Lee, Reinforcement learning based opti-
mal control of batch processes using Monte-Carlo deep deterministic pol-
icy gradient with phase segmentation, Computers & Chemical Engineer-
ing 144 (2021) 107133. doii10.1016/j . compchemeng.2020.107133|
M. Sedighizadeh, A. Rezazadeh, Adaptive PID controller based on re-
inforcement learning for wind turbine control, in: Proceedings of world
academy of science, engineering and technology, volume 27, Citeseer,
2008, pp. 257-262.

I. Carlucho, M. De Paula, S. A. Villar, G. G. Acosta, Incremental g-
learning strategy for adaptive PID control of mobile robots, Expert Sys-
tems with Applications 80 (2017) 183-199.

W. J. Shipman, L. C. Coetzee, Reinforcement Learning and Deep Neural
Networks for PI Controller Tuning, IFAC-PapersOnLine 52 (2019) 111—
116. doii110.1016/j.ifacol.2019.09.173|

N. P. Lawrence, M. G. Forbes, P. D. Loewen, D. G. McClement, J. U.
Backstrom, R. B. Gopaluni, Deep reinforcement learning with shallow
controllers: An experimental application to PID tuning, arXiv preprint
arXiv:2111.07171 (2021).

M. R. Mowbray, R. Smith, E. A. Del Rio-Chanona, D. Zhang, Using pro-
cess data to generate an optimal control policy via apprenticeship and re-
inforcement learning, AIChE Journal (2021). doi:10.1002/aic.17306|
Y. Bao, Y. Zhu, F. Qian, A Deep Reinforcement Learning Approach
to Improve the Learning Performance in Process Control, Industrial &
Engineering Chemistry Research (2021) acs.iecr.0c05678. doii10.1021/
acs.iecr.0c05678.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learning

http://dx.doi.org/10.1016/j.compchemeng.2019.05.029
http://dx.doi.org/10.1016/j.compchemeng.2019.05.029
http://dx.doi.org/10.1002/aic.16689
http://dx.doi.org/10.1016/0098-1354(92)80045-B
http://dx.doi.org/10.1016/j.jprocont.2007.10.016
http://dx.doi.org/10.1016/j.asoc.2014.06.037
http://dx.doi.org/10.1016/j.asoc.2014.06.037
http://dx.doi.org/10.1016/j.asoc.2009.10.018
http://dx.doi.org/10.1016/j.jprocont.2018.11.004
http://dx.doi.org/10.1016/j.jprocont.2018.11.004
http://dx.doi.org/10.1109/COASE.2018.8560593
http://dx.doi.org/10.1016/j.jprocont.2018.01.010
http://dx.doi.org/10.1016/j.jprocont.2018.01.010
http://dx.doi.org/10.1016/j.jprocont.2018.07.013
http://dx.doi.org/10.1016/j.jprocont.2021.06.004
http://dx.doi.org/10.1016/j.jprocont.2021.06.004
http://arxiv.org/abs/2102.13012
http://arxiv.org/abs/2102.13012
http://dx.doi.org/10.1016/j.compchemeng.2020.107133
http://dx.doi.org/10.1016/j.ifacol.2019.09.173
http://dx.doi.org/10.1002/aic.17306
http://dx.doi.org/10.1021/acs.iecr.0c05678
http://dx.doi.org/10.1021/acs.iecr.0c05678

[32]

(33]
(34]

(35]

(36]

[37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

(45]

[46]
(47]

(48]
[49]

quadrupedal locomotion over challenging terrain, Science robotics 5
(2020).

J. Siekmann, S. Valluri, J. Dao, L. Bermillo, H. Duan, A. Fern, J. W.
Hurst, Learning memory-based control for human-scale bipedal locomo-
tion, CoRR abs/2006.02402 (2020). URL: https://arxiv.org/abs/
2006.02402. larXiv:2006.02402!

R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT
press, 2018.

M. Huisman, J. N. van Rijn, A. Plaat, A survey of deep meta-learning,
Artificial Intelligence Review (2021) 1-59.

V. R. Konda, J. N. Tsitsiklis, Actor-critic algorithms, in: Proceedings of
the Advances in Neural Information Processing Systems, Denver, USA,
2000, pp. 1008-1014.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
D. Wierstra, Continuous control with deep reinforcement learning, arXiv
Preprint, arXiv:1509.02971 (2015).

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, De-
terministic policy gradient algorithms, in: International conference on
machine learning, PMLR, 2014, pp. 387-395.

R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, Policy gradi-
ent methods for reinforcement learning with function approximation, in:
Proceedings of the Advances in Neural Information Processing Systems,
2000, pp. 1057-1063.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region
policy optimization, in: International conference on machine learning,
PMLR, 2015, pp. 1889-1897.

S. Bengio, Y. Bengio, J. Cloutier, J. Gescei, On the optimization of a
synaptic learning rule, in: Optimality in Biological and Artificial Net-
works?, Routledge, 2013, pp. 281-303.

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, N. De Freitas, Learning to learn by gradient
descent by gradient descent, in: Advances in neural information process-
ing systems, 2016, pp. 3981-3989.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, P. Abbeel,
RL?: Fast reinforcement learning via slow reinforcement learning, arXiv
preprint arXiv:1611.02779 (2016).

K. Rakelly, A. Zhou, D. Quillen, C. Finn, S. Levine, Efficient off-policy
meta-reinforcement learning via probabilistic context variables, in: Inter-
national conference on machine learning, 2019, pp. 5331-5340.

J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, M. Botvinick, Learning to rein-
forcement learn, arXiv preprint arXiv:1611.05763 (2016).

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using rnn
encoder-decoder for statistical machine translation, arXiv preprint
arXiv:1406.1078 (2014).

1. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
S. Skogestad, Simple analytic rules for model reduction and PID con-
troller tuning, Journal of process control 13 (2003) 291-309.

J. Achiam, Spinning Up in Deep Reinforcement Learning, 2018.

J. Schulman, P. Moritz, S. Levine, M. Jordan, P. Abbeel, High-
dimensional continuous control using generalized advantage estimation,
2018.larXiv:1506.02438.

Appendix: Meta-RL Implementation Details

12

A.1: Hyperparameters used to train the meta-RL network.

Hidden layer size

Recurrent cell type

Activation function for feedforward layers
Optimizer

Initial learning rate

Episode length

Sequence length for backpropagation
Training episodes per epoch

Epochs

Discount factor*

GAE *

Policy iterations*

Value iterations*

Maximum KL divergence*

100

GRU
Leaky-ReLL.U
Adam

3x 1074

40 steps (110
time units)
40 steps

300

2500

0.99

0.95

Up to 20

40

0.015

*These hyperparameters are specific to PPO or RL more generally. The reader
is referred to the original PPO paper by Schulman et al. [20]] for further expla-

nation of these hyperparameters.

https://arxiv.org/abs/2006.02402
https://arxiv.org/abs/2006.02402
http://arxiv.org/abs/2006.02402
http://arxiv.org/abs/1506.02438

	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Background
	2.1 Reinforcement learning
	2.2 Meta Reinforcement Learning

	3 Meta-RL for process control
	3.1 Tasks, states, actions, costs
	3.2 RL Agent Structure
	3.3 Training Algorithm

	4 Experimental results
	4.1 Asymptotic Performance of the Meta-RL Tuning Algorithm
	4.2 Online Sample Efficiency of the Meta-RL Tuning Algorithm
	4.3 Adaptive Control Using the Meta-RL Tuning Algorithm
	4.4 Validation of the Meta-RL Algorithm's Internal Model Representation
	4.5 A simulated two-tank environment
	4.5.1 Description of the dynamics
	4.5.2 Adapting the Meta-RL Model to the Two Tank System
	4.5.3 Results

	5 Conclusion

